Jupyter NotebookからPythonでPostgreSQL 13を操作する

まずは堅実に定番RDBから

 NoSQLブームで勉強会界隈では影が薄れた感があるRDBMSですが、当たり前の存在になっただけで健在です。当サイトが使っているCMS『WordPress』にはMySQLが組み込まれていますし、当サイトを置いているAWSでもPostgreSQLがRedShiftやAuroraなど基幹サービスで使われています

 統計モデリングを知らないのにディープラーニングでイキる人が信用出来ないのと同様、RDBMSを知らないのにNoSQLを語るのもイタい人です。私も昨年はElasticsearchなどのNoSQLやApache Igniteなどの分散データベースにハマっていましたが、自分のイタさに気づいたためPostgreSQLを学び直しています。

 NoSQLや分散データベースを業務で使いこなしている方々の講演は勉強会で聞くことが出来ますが、彼らは「RDBMSを経験した上でNoSQLに進んでいる」のです。未経験者が講演を聞いていきなりNoSQLに行くのは『悪手』です。

初心者がNoSQLや分散RDBでやりたいことはPostgreSQLでも出来ている

 NoSQLが主に扱うJSONはPosgreSQLでも『JSON型』として扱えます。IMDBで話題となったインメモリ処理はPostgreSQLでも駆使されています。分散データベースの特徴であるクエリの並列処理はPostgreSQLでもパラレルクエリとして実装されている上、特別の設定無しで自動的に使ってくれます。

 昨年、実際にApage IgniteでPCサーバ5台のクラスタを構築しましたが、数10GB程度のデータではクエリに要する時間がシングルノードのPostgreSQLの方が速かったです。2.5GbEでもLANの遅延で並列処理のメリットが相殺されてしまいます。この規模のデータでクエリを高速化するなら、32コア64スレッドのパソコンでも買えば良いと思います。

 こういう事実は、基本的すぎて勉強会ではなかなか教えてもらえないですね。エンジニアの方にとっては常識なのでしょうが……💦

PythonでPostgreSQLを扱うパッケージ『psycopg2』

 PythonでPostgreSQLを扱う際は『psycopg2』というパッケージを使うのが一般的なようです。視覚化のためのパッケージ『Plotly』と併せてインストールします。

(base) masaru@ASUS-TUF-Gaming:~$ conda install psycopg2
(base) masaru@ASUS-TUF-Gaming:~$ conda install plotly

Jupyter Notebookでの実装

 必要なパッケージの読み込みなどの初期設定を行います。

# -*- coding: utf-8 -*-
import psycopg2
import pandas as pd
import plotly as py
import plotly.graph_objs as go
from plotly.offline import iplot, init_notebook_mode
init_notebook_mode()

 psychopg2でデータベース接続を定義します。

def connect():
    con = psycopg2.connect("host=" + "localhost" +
                           " port=" + "5432" +
                           " dbname=" + "google_mobility" +
                           " user=" + "masaru" +
                           " password=" + "xxxxxxxxxxxx")
    return con

 続いて、クエリを定義します。

def select_execute(con, sql):
    with con.cursor() as cur:
        cur.execute(sql)
        rows = cur.fetchall()

    return rows

 定義したクエリを実行します。

con = connect()
sql =  "select * from google_mobility where SUB_REGION_1 = 'Tokyo'"
result = select_execute(con, sql)

 クエリの結果をPandasデータフレームに代入します。

df = pd.DataFrame(result)
df.head()

 とりあえず全部カラム名をつけてあげます。

columns = ["id","country_region_code","country_region","sub_region_1","sub_region_2","metro_area","iso_3166_2_code","census_fips_code","date","retail","grocery","parks","transit","workplaces","residental","place_id"]
df.columns = columns
df.head()

 Plotlyで表示するデータを設定します。

trace1 = go.Scatter(
        x = list(df.date),
        y = list(df.retail),
        mode = 'lines+markers',
        name = 'retail',
        marker = dict(
                color = 'blue'
                )
        )

trace2 = go.Scatter(
        x = list(df.date),
        y = list(df.grocery),
        mode = 'lines+markers',
        name = 'grocery',
        marker = dict(
                color = 'orange'
                )
        )

data = [trace1, trace2]

 続いて、Plotlyの特長であるスライダーを設定します。

layout = dict(
    title='Time series with range slider and selectors',
    xaxis=dict(
        rangeselector=dict(
            buttons=list([
                dict(count=1,
                     label='1m',
                     step='month',
                     stepmode='backward'),
                dict(count=6,
                     label='6m',
                     step='month',
                     stepmode='backward'),
                dict(count=1,
                    label='YTD',
                    step='year',
                    stepmode='todate'),
                dict(count=1,
                    label='1y',
                    step='year',
                    stepmode='backward'),
                dict(step='all')
            ])
        ),
        rangeslider=dict(
            visible = True
        ),
        type='date'
    )
)

 グラフを描画します。

fig = dict(data=data, layout=layout)
iplot(fig)

 スライダーを動かせるグラフの出来上がりです。

WordPressをローカル環境と同期する『Local』

Webサイトはバックアップしないといずれ「死ぬ」

 私が初めて独自ドメインでWebサイトを立てたのは20年も前になります。しかし2010年代以前に作ったサイトで今も残っているものはひとつもありません。このcan.ne.jpドメインにもかつて別のブログがありましたが、もはやデータ復旧もままなりません。

 不慮の事故、モチベーション喪失、技術の変化……。さまざまな理由でサイトは「死ぬ」のです。AdobeのFlash廃止でも話題になりましたが、多くのサイトが更改しなければ表示も難しくなり、いずれWebからひっそりと消えてなくなります。

 WordPressというオープンソースCMSのデファクトスタンダードが確立したことで、少なくともサイトデータのサルベージは行い続けられる可能性が高まりました。個人サイトは次々と書き捨てられていく商業サイトと異なり「生きた証」でもあるので、なるべく『生涯現役』を続けたいところです。

個人サイトのバックアップはローカルで分散

 商業サイトではクラウド上にバックアップを取るのが一般的です。複数のクラウドに分散することはあっても、ローカルへの手動バックアップを前提としているサイトは少ないでしょう。

 しかし個人サイトはクラウドの契約解除や無償ストレージ終了などでバックアップも消えてしまうのが常です。消える直前で対策すればサルベージや移行は可能ですが、仕事や生活の多忙で断念するケースも多いのが現実。やはり最終的には物理的に手元にもデータを置いておくのが一番です。

ローカルでWordPressサイトをミラー出来る『Local』

 『Local』はPC上にLAMPやLEMPなどにWordPressを加えたスタックをウィザード形式で構築し、クラウドからバックアップしたデータでローカルサイトとして表示、管理出来るソフトです。無償版があるので個人サイト向きです。Windows、Mac、Linuxの主要OSに全て対応しているのも魅力的です。

 当サイトを実際にローカルでミラーしてみましたので、メモを残します。

まずはバックアップ

 Local自体にはクラウド上のWordPressサイトをバックアップする機能はありません。WordPressにはバックアップ用のプラグインが複数ありますが、今回は『BackWPup』を使います。

 まず、ジョブを作成します。バックアップ対象は『DBバックアップ』『ファイル』『プラグイン』の3つ、宛先は『フォルダー』、圧縮形式は『zip』にしました。

  バックアップファイルはまずクラウド(LightSail)上に作られますので、『バックアップ』サブメニューから『ダウンロード』を選んで取得します。

バックアップのLocalへのインポート

Localを起動し、『Import Site』でzipファイルを読み込む

 バックアップデータを取得したらLocalを起動し、『Import Site』でzipファイルを読み込みます。

LAMPのバージョンはクラウドと合わせる

 LocalはWebサーバにApacheとnginxを選べるなどスタックの選択肢が充実しています。サイトの再現性の観点から、なるべくクラウド上のスタックとバージョンを合わせた方が良いそうです。

クラウド上のWordPressサイトがほぼローカルで再現

Ubuntu上のLocalでWordPressサイトが表示された

 ご覧のとおり、ローカルドメイン(can.ne.jp.local)でWordPressサイトが表示されています。テーマやプラグインまで再現されているので、クラウド上のサイトイメージそのままで見られるのは嬉しいところです。

管理画面もローカルで動く

 管理画面もローカルで動いています。この環境を複数のPCやMac上に持っておけば不測の事態でも生き延びた端末から復旧が出来そうです。Web分野のトレンドが大きく変わってしまったときは、Localで過去のサイトデザインを確認しながら、どのように移行させるか検討することになるでしょう。

Kaggleのデータをコンペ以外の目的で利用する

データサイエンティストに敵わないからといって避けて通るのはもったいない

 Kaggleはコンペティションで有名なため「データサイエンティスト以外はお断り」というイメージがあります。しかし、優秀な方々に及ばないことが分かっていてもKaggleを避けて通るのはもったいないと思います。

 BIツールの学習など、実務寄りのデータがほしい機会は多くあります。Kaggleにどのようなデータがあるか知っていれば、目的に近いデータを入手出来ます。特にマーケティング分野のデータは企業秘密の塊であり一般公開されることが少ないため、Kaggleのデータはとても貴重なものです。

 本日は、昨年Twitterでも触れていた「Google Analytics Customer Revenue Prediction – Predict how much GStore customers will spend」をご紹介します。

実在するEコマースサイトのアクセスログ

 このコンペはRStudio社の主催で、GoogleのEコマースサイト『GStore』のセッション単位のアクセスログが約33GB、提供されています。

 CSVのカラムにJSON風のデータが詰め込まれていて処理が手強いですが、BIツールの基本である日次統計にもってこいです。参考書籍などで数10GBのデータを扱っている例は見たことがありませんが、これくらいのサイズがなければExcelで十分であり、データベースやBIツール、データ分析基盤などのスケーラビリティを試すなら最低でもGB単位のデータが必要です。

 昨年はこのCSVデータを自力での展開を試みましたが、データ構造が複雑なため簡単な置換処理ではテーブル構造に出来ませんでした。今年は先達の方のnotebookなどを参考にして、まずはPostgreSQLへのデータ格納までたどり着きたいと考えています。他の方から学べるのもkaggleの良いところですね。

(base) masaru@ASUS-TUF-Gaming:~$ conda install --channel https://conda.anaconda.org/conda-forge kaggle
(base) masaru@ASUS-TUF-Gaming:~$ kaggle competitions download -c ga-customer-revenue-prediction

Ubuntu 21.04ノート 環境構築(2日目)

細かい環境構築

 初日でUbuntu Linux 21.04の基本的なインストールが終わりました。プレリリース版であるDaily Buildでの導入でしたが、既にリリース月ということもあり大きな障害はありませんでした。

 2日目以降は細かい環境構築と機械学習周りの整備となります。

VLC動画再生
Spotify音楽配信
ubuntu-restricted-extras音楽や動画のコーデック
LibreOffice ppaLibreOfficeの自動アップデート
ubuntu-defaults-ja日本語環境 ※未対応の模様
chrome-gnome-shell、GNOME Shell integration、拡張機能GUIをカスタマイズするツール群
sambaLAN上のWindows PCなどとファイルを共有する
xrdpまだ
SynapticAPT に基づくグラフィカルなパッケージ管理ツール
GSmartControlS.M.A.R.T対応のSSDなどの状態を調べるツール。このPCの内蔵SSDは非対応な模様

 どれもインストールが特に難しいということはありませんでしたので、詳細説明は割愛します。

Ubuntu 21.04にPostgreSQL 13をインストールする

準備

sudo apt install curl ca-certificates gnupg
curl https://www.postgresql.org/media/keys/ACCC4CF8.asc | sudo apt-key add -
sudo sh -c 'echo "deb http://apt.postgresql.org/pub/repos/apt $(lsb_release -cs)-pgdg main" > /etc/apt/sources.list.d/pgdg.list'
sudo apt update

 PosgreSQLをaptのレポジトリに登録します。

インストール

(base) masaru@ASUS-TUF-Gaming:~$ sudo apt install postgresql
パッケージリストを読み込んでいます... 完了
依存関係ツリーを作成しています... 完了        
状態情報を読み取っています... 完了        
以下の追加パッケージがインストールされます:
  postgresql-13 postgresql-client-13 postgresql-client-common
  postgresql-common sysstat
提案パッケージ:
  postgresql-doc postgresql-doc-13 libjson-perl isag
以下のパッケージが新たにインストールされます:
  postgresql postgresql-13 postgresql-client-13 postgresql-client-common
  postgresql-common sysstat
アップグレード: 0 個、新規インストール: 6 個、削除: 0 個、保留: 6 個。
15.6 MB のアーカイブを取得する必要があります。
この操作後に追加で 48.1 MB のディスク容量が消費されます。
続行しますか? [Y/n] Y

 デフォルトではバージョン13が入るようです。

(base) masaru@ASUS-TUF-Gaming:~$ sudo systemctl status postgresql
● postgresql.service - PostgreSQL RDBMS
     Loaded: loaded (/lib/systemd/system/postgresql.service; enabled; vendor pr>
     Active: active (exited) since Mon 2021-04-05 17:36:05 JST; 6min ago
   Main PID: 116889 (code=exited, status=0/SUCCESS)
      Tasks: 0 (limit: 37748)
     Memory: 0B
     CGroup: /system.slice/postgresql.service

 4月 05 17:36:05 ASUS-TUF-Gaming systemd[1]: Starting PostgreSQL RDBMS...
 4月 05 17:36:05 ASUS-TUF-Gaming systemd[1]: Finished PostgreSQL RDBMS.

無事動いているようです。

PgAdmin 4は未対応の模様

PgAdminはまだUbuntu 21.04に未対応のようです。

(base) masaru@ASUS-TUF-Gaming:~$ sudo apt install pgadmin4
[sudo] masaru のパスワード: 
パッケージリストを読み込んでいます... 完了
依存関係ツリーを作成しています... 完了        
状態情報を読み取っています... 完了        
パッケージ pgadmin4 は使用できませんが、別のパッケージから参照されます。
これは、パッケージが欠落しているか、廃止されたか、または別のソース
からのみ利用可能であることを意味します。

E: パッケージ 'pgadmin4' にはインストール候補がありません

LANからPostgreSQLに接続可能にする設定

(base) masaru@ASUS-TUF-Gaming:~$ sudo gedit /etc/postgresql/13/main/pg_hba.conf 
(base) masaru@ASUS-TUF-Gaming:~$ sudo systemctl restart postgresql
# IPv4 local connections:
host    all             all             127.0.0.1/32            md5
host    all             all         192.168.100.1/24            md5

ユーザーの作成

postgres=# create role masaru with superuser login;
select * from pg_shadow;

 usename  | usesysid | usecreatedb | usesuper | userepl | usebypassrls | passwd | valuntil | useconfig 
----------+----------+-------------+----------+---------+--------------+--------+----------+-----------
 postgres |       10 | t           | t        | t       | t            |        |          | 
 masaru   |    16384 | f           | t        | f       | f            |        |          | 
(2 rows)

postgres=# alter role masaru with password 'xxxxxxxxxxx';
ALTER ROLE

データベースの作成

 『Google コミュニティ モビリティ レポート』のデータベースを作ってみます。

(base) masaru@ASUS-TUF-Gaming:~$ createdb google_mobility

 DBeaverで接続します。

 DBeaverでSQL文を実行してテーブルを作成します。

DBeaverでテーブルを作成する
create table google_mobility( 
	id SERIAL primary key, 
	country_region_code varchar(2) , 
	country_region varchar(255) , 
	sub_region_1 varchar(255) , 
	sub_region_2 varchar(255) , 
	metro_area varchar(255) , 
	iso_3166_2_code varchar(32) , 
	census_fips_code varchar(32) , 
	date date , 
	retail_and_recreation_percent_change_from_baseline integer , 
	grocery_and_pharmacy_percent_change_from_baseline integer , 
	parks_percent_change_from_baseline integer , 
	transit_stations_percent_change_from_baseline integer , 
	workplaces_percent_change_from_baseline integer , 
	residential_percent_change_from_baseline integer);

CSVデータのインポート

 いよいよCSVのインポートです。DBeaverはCSVも格納先フォルダをデータベースとして登録してからPostgreSQLにインポートするのがお作法のようです。

 データベース上のテーブルとCSVでカラム名が一致していれば、マッピングで困ることはないようです。

 とは言え、Google Mobilityデータも短期間のうちにplace_idというカラムが増えており、オープンデータの扱いのやっかいさを実感します。さらにCSVの中身が壊れているとインポートの段階で苦しみます……💦

 増えていたカラムはvarchar(32767)で格納されてしまっているので、varchar(32)に縮小します。

select place_id from google_mobility limit 10;
alter table google_mobility alter column place_id type varchar(32);

SQL select文でデータ抽出

select count(*) from google_mobility;
select * from google_mobility
	where sub_region_1 = 'Tokyo'
	order by date desc;
Google Community Mobility ReportからSQL select文でデータを抽出する

 4838804レコードから400ミリ秒ほどでselect文を実行できました。緊急事態宣言が解除された東京ですが、まだ交通、職場、小売店などでは自粛の影響が残っているようです。

Ubuntu 21.04使用開始(1日目)

Ryzen+NVIDIAのノートが欲しい。データベースと機械学習の全部入りラーメンだ

 前々から、図書館などでもガッツリ使い倒せるLinuxノートが欲しいと思っていました。具体的には、PostgreSQLがselect文で4スレッドくらい並列処理してくれて、TensorFlow/KerasでGPU SUGEEEE出来る程度のスペックです。

 Amazonの年末セールで『ASUS ゲーミングノートパソコン TUF Gaming A15 FA506IH (AMD Ryzen5 4600H/8GB・SSD 512GB/GTX 1650/1,920×1,080ドット (フルHD) (144Hz)/15.6インチ/フォートレス・グレイ)』が¥82,800と安かったので衝動買い。メモリは即32GBに増設しました。

「AMDが7nmで作ったワットパフォーマンスが良いRenoirが載ったノートにディープラーニングで使えるGTX 1650が付いて8万ちょい。買うしかない……」

 4600Hは6コア12スレッドのノートPC向けCPUで、AMD Renoirシリーズの廉価版です。『最強』ではありませんが、実売10万円以下のノートでこの性能は魅力的です。SSDは内蔵で別途2TBくらい欲しいですが、金欠なので追い詰まってから考えることにします。

AMD Ryzen 5 4600Hは7nm世代の廉価版モバイルCPU

 なお現在の最新モデルは「Ryzen PRO 5000シリーズ モバイル プロセッサ(5850U/5650U/5450U)」、及び「Ryzen 5000シリーズ モバイル プロセッサ(5800U/5700U/5600U/5500U/5400U/5300U)」で7nm世代のままです。5nmのZen4世代は2022年に登場予定です。

ゲーミングPCへのUbuntu 21.04のインストール

 Ubuntuのインストールが終わると、沢山の有名で楽しそうなアプリをリコメンドされます。「SSDの残りが300GBくらいしかないのに片っ端から入れちゃダメダ」と思いつつも入れられるうちはつい入れてしまいます。

日本語フォルダ名を英語化

 lsなどでパス指定するときにフォルダ名が日本語だとIMEの切り替えや入力が面倒なので、英語に変えてしまいます。

masaru@ASUS-TUF-Gaming:~$ LANG=C xdg-user-dirs-gtk-update

導入直後に入れたアプリ

 初心者でも導入に困らなさそうなものは名前だけ……。

NVIDIA driver metapackageNVIDIA独自のグラフィックドライバ。『ソフトウェアとアップデート』 – 『追加のドライバー』でプロプライエタリ版を指定してインストールする必要がある
Ubuntu Live Patchパッケージの自動更新サービス。実際は手動でapt updateを続けることが多いですが、念のため導入
Shutter画面キャプチャソフト。不具合のため現在使用できず
Krita定番の画像ソフト。Shutterが使えなかったので最優先で導入。個人的にも好きなソフト
Google Chrome, ChromiumWebブラウザ。SSOの誘惑と逃げたい気持ちでサンドイッチに
dbeaver-ceJDBCの汎用データベースクライアント
Anaconda言わずと知れたPython機械学習系のフレームワーク。PATHを汚染するので好きではないのですが、楽なので結局入れてしまいます
jupyter-notebookAnacondaに同梱のPython実行環境
Visual Studio Codeプログラム開発環境のデファクトスタンダード。Pythonなどのインタプリタを配下に置いてしまうAnacondaとの共存が課題
RAnacondaのパッケージとしてcondaでインストール
RStudioRの開発環境。PATHの問題を避けるためAnacondaからインストール
tracerouteサーバーまでのネットワーク経路を確認するツール
OpenJDK 11各種データベース用のJava開発環境

NDIVIAドライバの基本設定

 Ubuntu 21.04は、素の状態でNVIDIAの独自ドライバを使ってくれません。チューニングの観点から独自ドライバを入れるのが良さそうです。

masaru@ASUS-TUF-Gaming:~$ lspci | grep -i nvidia
01:00.0 VGA compatible controller: NVIDIA Corporation TU117M (rev ff)
01:00.1 Audio device: NVIDIA Corporation Device 10fa (rev ff)

 続いて、aptのレポジトリに最新のドライバが降ってくるように設定します。

masaru@ASUS-TUF-Gaming:~$ sudo add-apt-repository -y -n ppa:graphics-drivers/ppaPPA publishes dbgsym, you may need to include 'main/debug' component
Repository: 'deb http://ppa.launchpad.net/graphics-drivers/ppa/ubuntu/ hirsute main'
Description:
Fresh drivers from upstream, currently shipping Nvidia.

## Current Status

Current long-lived branch release: `nvidia-430` (430.40)
Dropped support for Fermi series (https://nvidia.custhelp.com/app/answers/detail/a_id/4656)

Old long-lived branch release: `nvidia-390` (390.129)

For GF1xx GPUs use `nvidia-390` (390.129)
For G8x, G9x and GT2xx GPUs use `nvidia-340` (340.107)
For NV4x and G7x GPUs use `nvidia-304` (304.137) End-Of-Life!

Support timeframes for Unix legacy GPU releases:
https://nvidia.custhelp.com/app/answers/detail/a_id/3142

## What we're working on right now:

- Normal driver updates
- Help Wanted: Mesa Updates for Intel/AMD users, ping us if you want to help do this work, we're shorthanded.

## WARNINGS:

This PPA is currently in testing, you should be experienced with packaging before you dive in here:

Volunteers welcome!

### How you can help:

## Install PTS and benchmark your gear:

    sudo apt-get install phoronix-test-suite

Run the benchmark:

    phoronix-test-suite default-benchmark openarena xonotic tesseract gputest unigine-valley

and then say yes when it asks you to submit your results to openbechmarking.org. Then grab a cup of coffee, it takes a bit for the benchmarks to run. Depending on the version of Ubuntu you're using it might preferable for you to grabs PTS from upstream directly: http://www.phoronix-test-suite.com/?k=downloads

## Share your results with the community:

Post a link to your results (or any other feedback to): https://launchpad.net/~graphics-drivers-testers

Remember to rerun and resubmit the benchmarks after driver upgrades, this will allow us to gather a bunch of data on performance that we can share with everybody.

If you run into old documentation referring to other PPAs, you can help us by consolidating references to this PPA.

If someone wants to go ahead and start prototyping on `software-properties-gtk` on what the GUI should look like, please start hacking!

## Help us Help You!

We use the donation funds to get the developers hardware to test and upload these drivers, please consider donating to the "community" slider on the donation page if you're loving this PPA:

http://www.ubuntu.com/download/desktop/contribute
More info: https://launchpad.net/~graphics-drivers/+archive/ubuntu/ppa
Adding repository.
Adding deb entry to /etc/apt/sources.list.d/graphics-drivers-ubuntu-ppa-hirsute.list
Adding disabled deb-src entry to /etc/apt/sources.list.d/graphics-drivers-ubuntu-ppa-hirsute.list
Adding key to /etc/apt/trusted.gpg.d/graphics-drivers-ubuntu-ppa.gpg with fingerprint 2388FF3BE10A76F638F80723FCAE110B1118213C

Linux版のAnacondaはシェルから導入

 Anacondaはパスなど各種設定をOSから乗っ取る『お行儀が悪いフレームワーク』なためか、Ubuntuでもストアアプリには入っていません。シェルスクリプトを落としてbashで実行します。

masaru@ASUS-TUF-Gaming:~/Downloads$ bash ./Anaconda3-2020.11-Linux-x86_64.sh 

Welcome to Anaconda3 2020.11

In order to continue the installation process, please review the license
agreement.
Please, press ENTER to continue
...
masaru@ASUS-TUF-Gaming:~/anaconda3/bin$ ./conda init
no change     /home/masaru/anaconda3/condabin/conda
no change     /home/masaru/anaconda3/bin/conda
no change     /home/masaru/anaconda3/bin/conda-env
no change     /home/masaru/anaconda3/bin/activate
no change     /home/masaru/anaconda3/bin/deactivate
no change     /home/masaru/anaconda3/etc/profile.d/conda.sh
no change     /home/masaru/anaconda3/etc/fish/conf.d/conda.fish
no change     /home/masaru/anaconda3/shell/condabin/Conda.psm1
no change     /home/masaru/anaconda3/shell/condabin/conda-hook.ps1
no change     /home/masaru/anaconda3/lib/python3.8/site-packages/xontrib/conda.xsh
no change     /home/masaru/anaconda3/etc/profile.d/conda.csh
modified      /home/masaru/.bashrc
(base) masaru@ASUS-TUF-Gaming:~$ conda update --all
Collecting package metadata (current_repodata.json): done
Solving environment: done

## Package Plan ##

  environment location: /home/masaru/anaconda3


The following packages will be downloaded:

    package                    |            build
    ---------------------------|-----------------
    _anaconda_depends-2020.07  |           py38_0           6 KB
...

Anacondaの功罪

 今回インストールしたAnacondaは2020年7月版。主な開発ツールのPATHを乗っ取る仕様であることを考えると半年以上放置されているのは少し疑念を感じます。もちろんconda updateはかけるのですが……。

 最新版をいち早く使いたい方はAnaconda無しのアカウントを作るか、仮想環境で運用することになりそうです。

(base) masaru@ASUS-TUF-Gaming:~$ python --version
Python 3.8.8

WordPress Multisiteを選ぶべきか

 AWS LightsailのWordPressには通常版とマルチサイト版(WordPress Multisite)の二種類があります。どちらを選んでも致命的な影響はなさそうですが、複数のサブドメインでWordPressを展開したいならMultisiteを選ぶ余地があります。

 上図がWordPress Multisiteと一般的なWordPressの違いです。

 「① 一般的なWordPress」では複数のサブドメインを展開するために同数のLightSailインスタンスを作る必要があります。インスタンスごとにリソースを確保するので、リソースを使い切らない小規模のサイトでは割高になります。一方で、特定ドメイン用のインスタンスを停止しても他のサブドメインに影響が無いと言った利点もあります。

 「② WordPress Multisite」では単一のLightSailインスタンス内で複数のサブドメインを展開出来ます。プラグインなど管理が一元化されるほか、LightSailインスタンスをひとつしか起動しないのでアクセス数が少ないうちは料金的にお得になります。ただし、一般的なWordPress用のプラグインが使えなくなる(有償契約が必要など)ことがあるため、初心者やサブドメインの展開予定が全くない場合は避けた方が良さそうです。

 また大規模なアクセスを期待出来るサイトの場合は、LightSailインスタンスのリソース制約があるのでWordPress Multisiteは避けた方が良いでしょう。「そもそもLightSailで大規模サイトを運用するのか?」という話もありますが💦

長期の仕事を探しています

デジタルマーケティング関連の仕事を探しています❢

 今春から長期の仕事を探しています。40代なので「採用はちょっと……」という人事ご担当者様も多いと思います。正直20代の元気な方のような伸びしろはありませんが、当サイトでスキルレベルが適切と思われた方は、お気軽にお声がけ頂ければと思います。下記フォームかツイッター(https://twitter.com/masarumkt)、あるいはメール(masapon05 アットマーク gmail.com)でご連絡下さい。

    GSC(Google Search Console)の初期設定とSitemap XMLの登録

     GA(Google Analytics)を設定しましたがGoogleの検索結果が表示されません。不親切だなと思いつつ、GSC(Google Search Console)の初期設定を行い検索エンジン向けのSitemap XMLを登録しました。

     久しぶりなので忘れていましたが、DNSへのTXTレコード登録でドメインの認証を行う必要があるのですね。AWSでドメイン登録しているので、登録作業はRoute 53で行いました。

    AWSのDNSサービス『Route 53』

    GTM(Google Tag Manager)のコンテナ公開とGA(Google Analytics)のPV確認

     昨日に設定したGTM(Google Tag Manager)とGA(Google Analytics)の設定、案の定ミスっていました。GTMのコンテナ公開忘れ……💦 数年前に仕事でも設定していたのにすっかり忘れていました。

    Googlt Tag Manager(GTM) - Container Publishing

     この手のツール設定は毎日のようにやっていないとすぐ忘れてしまいます。何はともあれ無事ファーストPVを確認しました。

    GTM(Google Tag Manager)とGA(Google Analytics)タグの導入

     SSLの設定が終わったので、GTM(Google Tag Manager)とGA(Google Analytics)の分析タグを入れてみました。WordPressなのでプラグイン(Google Tag Manager for WordPress) での導入です。

    https://ja.wordpress.org/plugins/duracelltomi-google-tag-manager/

      ソースにGTMのタグが入っていることまでは確認しましたが、正しく動いているかは実際に訪問者がカウントされてGAの画面上に出るまで分かりません。アクセス解析がらみの設定は正しいかどうか、ミスがないか分かりにくいのでなかなかの強敵です。

    Google Tag Manager for WordPressが差し込んだタグ

     Googla Analyticsはバージョン4の展開を始めており、当サイトのタグもGA4仕様となっています。ユーザートラッキングは国際的にプライバシーとの兼ね合いが問題視されるようになって久しく、今後GAFAなどがどのような対応を取るか見えないところがあり要注意です。